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ABSTRACT

Thermodynamic models have been formulated to predict lower and upper I_ounds for

the mass of pressurant gas .r_..uired to pressurize.ac_ogenic tank.,.and then expel,!iqr_d
from the tank. Limiting condilaons are Dasea on elmer mermai eqmuonum or zero _ _y
exchange between the pressurant gas and initial tank contents. The models are independent

of gravity level and allow specification of autogenous or non-condensible pressurants.
Partial liquid fill levels may be specified for initial and final conditions. Model predictions
are shown to successfully bound results from limited normal-gravity tests with condensible

and non-condensible pressurant gases. Representative maximum collapse factor maps are

presented for liquid hydrogen to show the effects of initial and final fill level on the range
of pressurant gas requirements. Maximum collapse factors occur for partial expulsions

with large final liquid fill fractions.

INTRODUCTION

Future space exploration missions will require large quantifies of cryogenic liquids
and the ability to transfer these fluids between earth-to-orbit tankage vehicles, orbiting

depots, and space transportation vehicles. Such transfer operations will require supply
tank pressurization and pressurized expulsion to achieve the transfer between spacecraft.
The technique involves the introduction of a gaseous pressurant into a cryogenic supply
tank. When the tank pressure becomes sufficiently high, liquid cryogen is expelled from
the tank via a transfer line to the destination point. The principal objective of pressurization

analysis is the determination of the required amount of pressurizing gas for transfer
operations. An accurate estimate of the amount of pressurant gas required for a transfer
operation is highly desirable; having excess pressurant carries a substantial weight penalty,
while an insufficient amount will result in incomplete cryogen transfer.

Pressurization of a vessel containing cryogenic fluid by the addition of a relatively

warm pressurant gas introduces a number of complex energy transfer processes into the

system. Condensation of the pressurant may occur at the liquid-vapor and vapor-wall
interfaces. Evaporation of liquid at the liquid-vapor interface may also occur. Heat and
mass exchange rates at the liquid-vapor and vapor-wall interfaces are dependent upon
widely varying conditions. For example, low gravity performance will differ from that in

normal-gravity due to differences in liquid orientation and thermal stratification.
A logical starting point for calculating the amount of pressurant required for a transfer

operation is to determine the extreme case requirements, thus bounding the analysis. This

approach has been reported by Moore et al 1. The limitations of the Moore analysis are that
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themodelsassumeaninitially full tankwhichis entirelyemptiedandthatonly condensible
pressurantgasis considered.Thispaperdescribesanextensionof theearlieranalysisthat
allows calculationsfor various initial andfinal tankfill levelsusing either autogenous
(condensible)or non-condensiblepressurantgases. In thesemodels, the tank is first
pressurizedto a higher pressure(the rampprocess)and then the liquid is expelled at
constanttankpressure.Theanalysesareapplicableto tankpressurizationandexpulsionin
low or normalgravityenvironments.Comparisonswith experimentaldataareprovidedas
well asexamplecalculationsfor hypotheticalspaceapplications.

THERMODYNAMIC ANALYSES

Two models will be described. The first is for an ideal process, which leads to

relatively low pressurant mass requirements, while the second imposes a thermal
equilibrium condition that leads to significandy higher requirements. The idealized
situation is characterized by a complete absence of energy and interfacial mass transfer.

The equilibrium model may be considered as an extreme case representative of conditions
such as lengthy transfer times coupled with vigorous mixing of the tank fluid and
pressurant. The models may not establish absolute minimum and maximum pressurant
needs, but are expected to sufficiently bound actual requirements.

Heat exchange with the tank wall is not allowed in the ideal model, and is neglected in
the thermal equilibrium model due to the resulting narrow wall temperature range and low
specific heat of typical wall materials ff the wall is assumed to be in thermal equilibrium
with the tank contents. The validity of ignoring the wall energy increase in the thermal

equilibrium model is illustrated by Fig. 1 which shows the amount of total energy input
absorbed by wall heating for self-pressurization of a representative lightweight tank for
spaceflight under homogeneous, thermal equilibrium conditions. The assumption is clearly
valid for liquid hydrogen and is acceptable for nitrogen and oxygen except when the liquid
fill level approaches zero. In applications with tanks of substantial heat capacity, energy
exchange with the wall becomes significant--thus inclusion of wall heating would be

necessary.

10 -1

_10 -2

_ -3
_10

-d

10 .4

0

I I I

I I I

25 50 75

Initial Liquid Fill Level, %

100

Figure 1 - Wall Energy Increase as a
Fraction of Total Energy Input.
Self-Pressurization Under Thermal

Equilibrium Conditions, 100 to 200
kPa. 150 kg Aluminum Alloy
Tank, 5 m 3.



Potential and kinetic energyterms areneglected. The tank (control volume) is
assumedto be rigid, thereforework due to volume expansionor contraction is zero.
Furthermore, the tank is assumedto be well-insulated, and heat transfer from the
surroundingsis neglected.Whenanoncondensiblepressurantis used,it is alsoassumed
thatthegasis insolublein the liquid. (This is usually,butnotalways,avalid assumption.)
In the analysesthat follow, the initial fluid stateprior to pressurizationis saturatedat the
startingpressureandfreeof any noncondensible component.

Ideal Model

Thermal isolation of the liquid, initial ullage, and added pressurant components is
assumed. It is assumed that the initial ullage mass undergoes an isentropic compression

during ramp pressurization. For isentropic compression over the pressure range of interest
(100 to 350 kPa), the liquid volume is constant to within one-half of one percent. Thus, it
is unnecessary to include the liquid contents in the analysis. The added pressurant gas f'dls
the remaining ullage volume during pressurization and occupies the volume of the

displaced liquid during expulsion. It is assumed that the pressurant gas remains at its inlet
temperature after entering the tank. The pressurant requirement is calculated from a simple

volumetric analysis

= Pb,2_l_ F2 Pa,1 (1-F1) 1rnp -
(1)

where the required gas and vapor densities are obtained from thermodynamic tables.

P a,1 = P sat ( P1) (2a)

Pa,2 = P(P2,s) with s = ssat(P1) (2b)

po,z= p(1"2,ri. ) (2c)

The pressurant gas may be either condensible or noncondensible.

Thermal Equilibrium Model-Autogenous Case

Thermal equilibrium is assumed to exist between the tank contents and the added

pressurant--the pressurant gas, vapor, and liquid are all at a uniform temperature. It is
further assumed that equilibrium is maintained throughout both the ramp and expulsion

processes. The ramp. ends at an increased liquid fill level due to thermal expansion of the
liquid and condensataon of autogenous pressurant gas. Consequently, the specified initial
liquid fall fraction must be sufficiently less than unity (approximately <_ 0.95) to allow
adequate space for thermal expansion of the liquid during the process.

Governing equations are applied to a control volume containing the tank fluid
contents. Pressurant mass and energy enter the control volume and liquid mass and energy
exit the control volume during expulsion. Two governing equations are the conservation

of mass and energy. For the autogenous case, the final fluid state is saturated at the final
tank pressure. If final fill level is specified, there are two unknowns--pressurant mass and
expelled liquid mass. Simultaneous solution of the mass and energy conservation
equations is sufficient, ff total liquid outflow mass is specified (0 for ramp), there are three
unknowns--pressurant mass, final vapor mass, and final liquid mass. A third equation--a
volume balance at the final state--is required to obtain the solution.
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Conservationof mass- autogenouscase:

me, 1 + ma, 1 + mp = me, 2 + ma, 2 + m o (3)

Conservation of energy - autogenous case:

me,lUg, 1 + ma,lUa,1 + mphin

= mg,2ug, 2 + ma,2Ua,2 + moh o
(4)

Volume constraint - autogenous case:

me'2 _- ma'2 - V (5)

P g,2 P a,2

Thermal Equilibrium Model-Noncondensible Case

When the equilibrium model is applied to processes involving a noncondensible
pressurant, the modeling becomes more complex. The two component ullage is modeled
by the Amagat Law--each component is at the mixture temperature and pressure, and the
sum of the component volumes equals the total ullage volume. It is not know beforehand
whether the fluid temperature is saturated or subcooled. If it is saturated, the temperature is

specified and the ullage contains both vapor and the noncondensible gas. If the
temperature is less than the saturation temperature at the final pressure (subcooled
condition), then the temperature is an unknown, and the ullage contains only
noncondensible gas (since the vapor cannot exist at this state). The same governing

equations apply with additional terms for the noncondensible ullage component. When the
temperature is below saturation, the vapor component is excluded.

Conservation of mass - noncondensible case:

me, 1 + ma, 1 + mb, 1 + mp = me, 2 + ma, 2 + rob, 2 + mo (6)

Conservation of energy - noncondensible case:

me,lUg, 1 + ma,lUa,1 + mb,lUb, 1 + mphin

= mg,2ug, 2 + ma,2Ua,2 + mb,2Ub,2 + moh o
(7)

Volume constraint - noncondensible case:

me'2 t. ma'2 + mb'2 = V (8)

PC,2 Pa,2 Pb,2

The ramp process is solved first. Saturation is assumed, and the above equations yield a

solution for the three unknowns--m e, ma, 2, and mp (= mb, 2 for ramp only). If a

meaningful solution cannot be obtained, the liquid is subcooled. An iterative technique is

then employed to determine the unknowns---m e, mp, and the final temperature.

If the ramp ends at the saturated state, the expulsion will also occur under saturated
conditions with saturated liquid outflow. There are four unknowns--
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ma,2, rob, 2, mp, and me, 2 or mo--and a fourth governing equation, conservation of the

noncondensible component only, is required to obtain a solution.

Conservation of noncondensible mass:

rob, 1 +mp = rob, 2
(9)

However, if the expulsion starts at a subcooled liquid state, energy from the pressurant

heats the liquid thus causing the temperature to rise and the outflow enthalpy to increase.
Under this condition, the expulsion process is solved incrementally and reqmres solving

for four unknowns--mb, 2, rap, mg,2 or m o, and the final temperature at each expulsion

increment.

As the expulsion proceeds, it is possible to reach the saturation temperature--at this point
the solution procedure must switch to the saturation analysis discussed earlier.

Thermal Equilibrium Model-Parahydrogen/Normal Hydrogen

Pressurization of liquid parahydrogen with normal hydrogen gas is a special case

requiring a separate thermal equilibrium analysis since the available sensible heat of normal
hydrogen (a mixture of para- and orthohydrogen) is less than for pure parahydrogen. This
model uses an approach similar to the autogenous equilibrium model with internal energies
and outflow enthalpy based on mixture propemes. It is assumed that no ortho- to

parahydrogen conversion occurs and that the mass fraction of normal hydrogen is uniform
throughout the control volume. An iterative procedure is required to obtain the normal

hydrogen mass fraction, x.

Liquid specific internal energy:

ug = xUg, n + (1 - x)Ug,p (10)

Vapor specific internal energy:

u a = XUa,n + (1 - X)Ua, p (11)

Outflow specific enthalpy:

ho = xho, n + (1 - x)ho, p
(12)

A normal hydrogen mass conservation equation is used to determine convergence of the

normal hydrogen mass fraction:

x 2 =
mp+ xl(mg,1 + ma, 1 - mo/2)

mg,2 + ma, 2 + m o/2

(13)

For ramp calculations, m o and x1 are zero. During expulsion, the mass fraction of normal

hydrogen increases, therefore an incremental expulsion analysis is necessary to update the
vapor and liquid specific energies and outflow enthalpy.
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COMPARISON WITH EXPERIMENTAL DATA

The ideal and thermal equilibrium models are compared in Fig. 2 to normal-gravity

data2, 3 where liquid parahydrogen was expelled using normal hydrogen pressurant gas. In
ref. 2, the pressurant gas was introduced through a diffuser located in the ullage region,
while in ref. 3, the pressurant was injected direcdy into the liquid near the bottom of the
tank. Total pressurant mass is the amount required for the ramp. plus expulsion. The
models adequately bound the experimental data and show increasing pressurant
requirements with increasing expulsion pressure. The maximum collapse factor, defined
as

CFmax = thermal equilibrium pressurant mass (14)
ideal pressurant mass

increases with increasing expulsion pressure as well. Since normal hydrogen gas was

used in the experiments, the data cannot be strictly classified as autogenous pressurization.
In the figure, the predictions of the autogenous thermal equilibrium model are also shown.
It is apparent that this model predicts pressurant mass values lower than measured values
and thus does not provide a sufficient upper bound for pressurant requirements.

Figure 3 shows a comparison of the models with experimental data 4 where a noncon-
densible pressurant gas, helium, was used to expel liquid methane. The differences in
measured pressurant requirements are due to static vs. liquid sloshing conditions in the
tank, the presence or absence of anti-slosh baffles in the tank, and variations in expulsion
time. Again, the models show sufficient bounding of experimental results. Both models
exhibit decreasing pressurant requirements with increasing inlet pressurant gas
temperature. The ideal model predictions follow the inverse temperature dependence for
ideal gas behavior, while the thermal equilibrium model is relatively insensitive to

pressurant temperature because of the large heat capacity of the liquid methane. It can be
determined from the model curves that the maximum collapse factor increases with

pressurant temperature.

EXAMPLE CALCULATIONS

The models were used to generate maximum collapse factor maps for pressurization

and expulsion of liquid parahydrogen as functions of the initial and final f'dl fractions. The
tank pressure range and inlet gas temperature were selected as representative values for
space applications. Figure 4 is a contour plot for the autogenous case, while Fig. 5
provides results for pressurization using gaseous helium, a noncondensible. The contours
are similar, and exhibit approximately the same range of maximum collapse factors except

in the upper right comer of the maps where the maximum values are higher for the
autogenous case. At large final fill fractions (approximately greater than 0.5), the ratio of
maximum-to-minimum pressurant mass is a factor of 10 or more. This result indicates the

importance of accurate predictive capabilities for pressurant requirements in initially full
systems undergoing partial expulsions. Conversely, as the initial and final fill levels
approach zero, the maximum collapse factor decreases and the use of simple predictive
models may suffice.
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CONCLUSIONS

The use of the ideal and thermal equilibrium models to bound pressurant gas

requirements has been extended to partially filled tanks and to the use of noncondensible
pressurant gases. Pressurization of liquid parahydrogen with gaseous normal hydrogen
has been treated as a special case of the thermal equilibrium model. The models have been
validated with limited normal-gravity data and allow the determination of the possible range

of pressurant mass requirements in preliminary design calculations. The magnitude of the
maximum collapse factor allows one to evaluate the need for improved predictive

capabilities.

NOMENCLATURE

CF collapse factor
F liquid flU fraction (by volume)
h specific enthalpy
m mass

P pressure
s specific entropy

T temperature
u specific internal energy
V total tank volume

x normal hydrogen mass fraction

p density

subscripts

a

b
in

g

max

n

o

P
sat

1
2

initial vapor component (ideal model) or vapor (t.e. model)
pressurant component (ideal model) or noncondensible (t. e. model)

pressurant inlet

liquid
maximum

normal hydrogen
outflow

pressurant or parahydrogen
saturated

starting condition
ending condition
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